Indian Statistical Institute Final Examination 2016-2017 B.Math Third Year Complex Analysis

Time : 3 Hours Date : 15.11.2016 Maximum Marks : 100 Instructor : Jaydeb Sarkar

(i) Answer all questions. (ii) $B_r(z_0) := \{z \in \mathbb{C} : |z - z_0| < r\}$. (iii) $\mathbb{D} := B_1(0)$.

Q1. (10 marks) Let \mathbb{H} be the upper half plane of \mathbb{C} and let $f : \mathbb{C} \to \mathbb{H}$ be a holomorphic function. Prove that f is a constant.

Q2. (10 marks) Identify all the singularities of the following function and determine the nature of each singularity.

$$\frac{z}{e^z - 1}.$$

Q3. (10 marks) Calculate the residues of the following functions at each of the poles:

(i)
$$\frac{\sin z}{z^2}$$
, (ii) $\frac{\cos z}{z^2}$.

Q4. (10 marks) Let z = a be a pole of order n of a function f. Prove that z = a is a pole of order n + 1 of f'.

Q5. (15 marks) Use the residue theorem to compute the following integral

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx$$

Q6. (15 marks) Let Ω be a simply connected domain and $0 \notin \Omega$. Find all the branches of $z^{\frac{1}{2}}$ in Ω .

Q7. (15 marks) Prove that every biholomorphic map of \mathbb{C} has the form f(z) = az + b, where $a \neq 0$ and b are in \mathbb{C} .

Q8. (15 marks) Let $\epsilon > 0$ and $f : B_{1+\epsilon}(0) \to \mathbb{C}$ be a non-constant holomorphic function. Assume that |f(z)| = 1 if |z| = 1.

(i) Prove that f has a zero in \mathbb{D} .

(ii) Prove that $f(\mathbb{D})$ contains \mathbb{D} .

Q9. (15 marks) Let f be a holomorphic function from \mathbb{D} to itself that is not the identity map z. Prove that f has at most one fixed point in \mathbb{D} .